66 lines
1.5 KiB
Python
66 lines
1.5 KiB
Python
import gen
|
|
import torch
|
|
import video
|
|
import os
|
|
|
|
|
|
SYSTEMPROMPTT = ""
|
|
SYSTEMPROMPTI = ""
|
|
SDBAD = ""
|
|
|
|
with open("promptUtoT.txt", "r") as file:
|
|
SYSTEMPROMPTT = file.readlines()[0]
|
|
|
|
with open("promptTtoI.txt", "r") as file:
|
|
SYSTEMPROMPTI = file.readlines()[0]
|
|
|
|
def main(prompt):
|
|
|
|
llm = gen.loadllama()
|
|
|
|
raw_text = gen.generate_story(prompt, SYSTEMPROMPTT, model=llm)
|
|
image_prompts = []
|
|
raw_text = raw_text.split("\n")
|
|
raw_text = [item for item in raw_text if item != ""]
|
|
|
|
for i in range(len(raw_text)):
|
|
promptimg = "Context:\n"
|
|
for l in range(0, i - 1):
|
|
promptimg += raw_text[l] + " "
|
|
promptimg += "Current Scene:\n" + raw_text[i]
|
|
image_prompts.append(gen.generate_story(promptimg, SYSTEMPROMPTI, model=llm).strip("\n"))
|
|
|
|
llm, speaker = gen.loadtts()
|
|
|
|
for i in range(len(raw_text)):
|
|
try:
|
|
gen.text_to_speech(raw_text[i], llm, speaker, i)
|
|
except:
|
|
pass
|
|
|
|
del llm
|
|
del speaker
|
|
torch.cuda.empty_cache()
|
|
|
|
llm = gen.loadsdxl()
|
|
|
|
for elem in range(len(image_prompts)):
|
|
gen.stableDiffusion(image_prompts[elem], SDBAD, llm, elem)
|
|
|
|
del llm
|
|
torch.cuda.empty_cache()
|
|
"""
|
|
llm = gen.loadsvd()
|
|
|
|
for elem in range(len([name for name in os.listdir('./images')])):
|
|
gen.stableVideoDiffusion(llm, f"./images/{elem}.png", elem)
|
|
|
|
del llm
|
|
torch.cuda.empty_cache()
|
|
"""
|
|
|
|
video.create_video(".", ".", "out.mp4")
|
|
|
|
return None
|
|
|
|
main("")
|